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Normal forms are instrumental in the analysis of dynamical systems described by
ordinary di!erential equations, particularly when singularities close to a bifurcation are to
be characterized. However, the computation of a normal form up to an arbitrary order is
numerically hard. This paper focuses on the computer programming of some recursive
formulas developed earlier to compute higher order normal forms. A computer program to
reduce the system to its normal form on a center manifold is developed using the Maple
symbolic language. However, it should be stressed that the program relies essentially on
recursive numerical computations, while symbolic calculations are used only for minor
tasks. Some strategies are proposed to save computation time. Examples are presented to
illustrate the application of the program to obtain high order normalization or to handle
systems with large dimension.

( 2001 Academic Press
1. INTRODUCTION

The idea of the normal form method is to employ co-ordinate transformations to
systematically construct the simplest possible form of the original autonomous di!erential
equations [1}5]. Such transformations are given in terms of formal power series. In general,
only some "nite truncation of the series can be found. The simplest form, or an
approximation of it obtained by some "nite truncation, is expected to preserve the
dynamical properties of the original system in the neighborhood of the bifurcation
point [6]. Being simpler than the original equations, the normal form is more
amenable to analysis. One application of normal forms is the analysis of oscillations.
For example, weakly non-linear vibrations were studied by normal form theory in
reference [7].

However, "nding a normal form for a given non-linear system is not a simple task.
Explicit formulas for higher order normal forms in terms of the coe$cients of the original
system are extremely involved. Therefore, several researchers have tried to develop
computer programs for some speci"c bifurcations [8}10]. Similar complexity problems
arise in asymptotic methods of non-linear analysis [11] which are known to bear a close
relationship with the normal form method.

The normal form theory is usually applied in conjunction with the center manifold theory
[12}17]. By successive non-linear transformations, it reduces the original system to a center
manifold associated with the critical modes at a bifurcation point. The reduced system on
the center manifold usually has much smaller dimension than the original system and
therefore is simpler to analyze. The dynamics on a center manifold represent the asymptotic
behavior of the system.
0022-460X/01/250909#19 $35.00/0 ( 2001 Academic Press
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This paper focuses on the implementation of the recursive formulas developed in
reference [13] as a computer program that is able to successively calculate normal forms of
arbitrarily increasing order (i.e., forms that are normal up to a given polynomial order).
Early attempts to implement the formulas were restricted to systems with small dimensions
or to normal forms of low order, using Fortran [18]. Here, a more general implementation
is achieved using the Maple symbolic computer package. However, it should be stressed
that the resulting program is essentially numeric and only uses symbolic calculations in
minor tasks. We believe that a relevant contribution of this paper is in showing by use of the
recursive formulas how unnecessary computations can be eliminated beforehand, thus
saving computation time. This is particularly meaningful for higher order normalization
and/or systems with large dimensions.

2. NORMAL FORM THEORY

The problem of "nding the simplest form, or normal form, to which equation (1) can be
reduced by means of co-ordinate transformations, has been considered by several authors
since PoincareH 's works, some hundred years ago. A recent version of the normal form was
given in 1964 by Briuno [1].
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Further, the linear part of the normal form (3) is in Jordan1s canonical form

When the linear part of system (1) is diagonal, the normal form (3) can be rewritten as
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resonance condition, which means that the summation in expression (4) includes only
resonant terms.

The convergence of the normal transformation (2) was studied by Briuno. Generally, the
normal transformation has to be considered in a formal sense because convergence is not
always true (see also reference [19]). However, independent of convergence, the
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approximations obtained by truncating higher order terms are useful as asymptotic
approximations, as in the case of the celebrated Krilov}Bogoliubov's averaging
method [11].

2.1. REDUCED SYSTEM AND ASYMPTOTIC ANALYSIS

System (1) can be transformed to

uR "Au#f (u, v),

vR"Bv#g(u, v), g(u, 0)"0,
(5)

by means of a transformation (2) where x"[u v]T; u3Rl, v3Rm ; f and g represent the
non-linear terms; the eigenvalues of A and B are critical and non-critical respectively. The
variables u

1
,2, u

l
are critical and v

1
,2, v

m
are non-critical. The invariant manifold v"0

corresponds to a center manifold and the reduced system

uR "Au#f (u, 0)

corresponds to the restriction of the complete system (5) to this invariant manifold. It is well
known that the reduced system contains the essential asymptotic properties of the complete
system and the center manifold theorem allows us to reduce the dimension of a problem at
a bifurcation point [12, 14].

2.2. NORMAL FORM AND BIFURCATION ANALYSIS

Consider the system

xR "F (x, a)"A(a)x#f (x, a), (6)

where f is analytical in its arguments, strictly non-linear in x and f (0, a)"0. The system
described by equation (6) depends on the control parameter vector a. Suppose that for
a"ac, the matrix A(ac) has l critical eigenvalues and m non-critical eigenvalues. To study
system (6) around the bifurcation value ac, one has to retain the almost resonant terms in
order to avoid small divisors [13]. To avoid the practical di$culty of calculating the normal
form for varying control parameter, a very simple and e$cient solution [13, 16, 17] is to
think of a perturbation scheme, since a is supposed to be near the critical value ac. De"ne
a small parameter vector e from

a"ac#e;

then, instead of equation (6), we consider the augmented system

xR "FM (x, e), eR"0. (7)

A similar strategy could be used for periodic or almost periodic systems in time [13], e.g.,
the augmented system

xR "FM (x, u), uK"!X2u, (8)
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where X is a positive constant, represents a periodic system with period ¹"2n/X but can
be seen as an autonomous (time-invariant) system.

3. THE RECURSIVE FORMULAS

This section brie#y describes the recursive normalization formulas. These formulas give
the normal form and the corresponding transformation which leads to a normalized
reduced system of form (5), restricted to a center manifold, up to any desired order of
normalization NM .

The following notation is used.
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Assume that system (1) has l simple critical eigenvalues so that matrix A in system (5) has
diagonal canonical form. The general case when A has a Jordan canonical form was
considered in reference [18]. The normalization procedure begins with a linear
transformation z"Rx, which should bring the critical part to a diagonal form:
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/(1)
kl xlH , (10)

where p is the order increment de"ned as follows. If the power series of system (1) have only
odd powers, then p"2; otherwise, p"1. The critical eigenvalues are given by j

j
and the

matrix A
22

(m]m) has all eigenvalues with negative real parts. The superscripts of
coe$cients / indicate the normalization order. The order of normalization is considered to
be 1 when the linear part is in block diagonal form as in equations (9) and (10). The
superscripts of variable x

i
in equations (9) and (10) were dropped for simplicity.

The linear transformation z"Rx is constructed from the right and left critical
eigenvectors uj and vj, j"1,2, l, respectively, according to Appendix 2 in reference [16].
We will call as N-normal the system which is in normal form up to the Nth order terms. The
normalization proceeds by successive application of normal transformations (2) starting
from the &&diagonal'' system (9) and (10), yielding increasing order of normalization. The
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normal transformation to go from the (N!p)-normal form, with state x(N~p), to the
N-normal form is an almost identity transformation of the form

x(N~p)
J

"x(N)
J

# +
Dk D/N

B(N)
Jk x(N)k, (11)

where N*1#p; p"1 or 2; k
k
"0, k"l#1,2, n (i.e., k3M ). Note that the sum in

equation (11) contains Nth order monomials of critical variables only. The coe$cients B of
the transformation are chosen so as to normalize terms of Nth order. Non-essential
couplings (non-resonant terms) are then eliminated. The new system in co-ordinates x(N) has
the same linear part as the diagonal system (9) and (10). In fact, all terms with order lower
than N remain unmodi"ed. Following this procedure, the following recursive formulas were
developed in reference [13].
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where k (1),2, k (¸) are integer non-negative vectors of the type k ( j )"[k
1
( j )2k

l
( j)

020] and Dk (1) D"2"Dk(¸) D"N.

4. COMPUTATIONAL ISSUES

Some simple measures to save computation time are: (1) the parameter equation eR"0
needs no update in the normalizing procedure; (2) only one equation of a complex conjugate
pair of equations needs update; (3) if the NM -normal form is required, the only terms of order
NM !1 that need update are those independent of non-critical variables (i.e., terms of the
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form xk). However, some more di$cult problems in the implementation of a numerically
e$cient program were found [18]:

1. de"ne an adequate ordering of integer vectors l corresponding to the powers of
a multivariable monomial of the form xl1

1
xl2
2
2xln

n
(with non-negative powers);

2. determine the vectors l"N and the vectors k (1),2, k(¸)3M that enter the sums, in
the second and third terms of formula (14), respectively;

3. for each normalizing transformation, skip the updating of coe$cients that will not
a!ect the "nal NM th normal form.

In what follows, we discuss each of these problems and propose some possible solutions.

4.1. ORDERING INTEGER VECTORS

Problem 1 is important in the reduction of the memory space required to handle the
series coe$cients B and /. For example, with l"n"5 and NM "9 the memory space
required by the conventional solution is 5]95"295245units. If the ordering approach
described below is employed the total number of monomials of order up to 9 is found to be
1206; thus, the memory space required is 5]1206"6030, approximately 1/49 of the
memory space required by the conventional solution. The integer vectors l"[l

1
l
2
2l

n
],

can be generated and ordered according to reference [18] by introducing an auxiliary
matrix H:

H
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H
i,k
"H

i`1,k
#H

i,k~1
, i"1,2, n!1, k"2,2,NM .

Note that, given n and NM , the matrix H, which is formed in a manner similar to Pascal's
triangle of combinatorial analysis, is calculated only once in the program. For example,
with n"3 and NM "5 we have the auxiliary matrix

H"

1 3 6 10 15
1 2 3 4 5
1 1 1 1 1

.

An important property of matrix H is that the sum of the elements of its Nth column gives
the number of monomials of order N (in n variables), i.e.,

+
i/1,2, n

H
i,N

"number of monomials of order N in n variables.

For example, the number of monomials of order 5 in 3 variables is 21"1#5#15. The
order number nl of all vectors l of dimension n and order DlD"N is given by "rst de"ning
nl"1 if l"[N 020]. Now, let ld"[I

1
I
2
2I

N
] be the d-representation of integer vector

l. Then, given l, N and n the corresponding nl is calculated from expression

nl"1#
N
+
i/1
C
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+
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H
r,N~i`1D , I

0
"1. (16)

The algorithm of Figure 1 implements the computation of equation (16).



Figure 1. Program to calculate the ordering number nl of all vectors of non-negative integers l, with DlD"N.

TABLE 1

Ordering all vectors of non-negative integers l with n"3 and DlD"2, 3

l ld I
1
!1 I

2
!I

1
I
3
!I

2
Nl

[2 0 0] [1 1] * * * 1
[1 1 0] [1 2] 0 1 * 2
[1 0 1] [1 3] 0 2 * 3
[0 2 0] [2 2] 1 0 * 4
[0 1 1] [2 3] 1 1 * 5
[0 0 2] [3 3] 2 0 * 6
[3 0 0] [1 1 1] * * * 7
[2 1 0] [1 1 2] 0 0 1 8

F F F F F F
[0 0 3] [3 3 3] 2 0 0 16
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It is clear from Table 1 that the di!erences I
i
!I

i~1
; i"1,2,N determine those

elements of matrix H that enter expression (16). If I
i
!I

i~1
"0, then no element of matrix

H is added.
A global order number Nl for all integer vectors l with Dl D"2,2, NM can be obtained by

modifying nl . The number Nl is calculated by simply adding to nl all entries of the matrix H,
except the "rst column, to the left of the DlDth column. This can be expressed as

start NlQnl ;then, for k"1#p, 1#2p,2, DlD!p, i"1,2, n, NlQNl#H
i,k
(17)



916 L. HSU E¹A¸.
The global ordering obtained for all l with Dl D"2, 3 is given in Table 1. A noteworthy
property of the proposed ordering is that, if the vectors in Table 1, in direct (l) or delta (ld)
representations, are regarded top-down as cardinal numbers, they are strictly decreasing or
increasing respectively.

By construction, the correspondence between integer vector l and order number Nl is one
to one. The normal form program starts by constructing a table containing all integer
vectors l with DlD"1#p, 1#2p,2,NM .

4.2. PARTITIONING INTEGER VECTORS

This section relates to problem 2. Consider the second term of equation (14). Given lN and
d
i
, the problem is to "nd vectors l3N, with Dl D"DlN D!N#1 and such that

lN!l#d
i
"k3M. This problem is equivalent to determining the complete list of vectors

k3M, DkD"N such that lN#d
i
!k"l3N. In turn, this is equivalent to partitioning

lN#d
i
3N into the sum of two terms k#l, where k3M. To solve the problem we say that

(with some abuse of language and notation) k is contained in l, denoted as l.k, if
l!k3N. Thus, the list consists of all k contained in the given lN#d

i
3N and can be

obtained by extracting from the given vector all possible k following the order de"ned in
problem 1. A partitioning algorithm following this procedure is described in Appendix A.

The partitioning technique is illustrated by some examples given in Table 2. As a further
example, note that for l"[1 1 0 4 0] and l"3 and DkD"3, the result is an empty list.

Consider now the calculation of the last term of equation (14). The inner sum covers all
k(i@ ), i@"1,2,¸ such that equation (15) holds. This is equivalent to partitioning the vector
lN!(d

iL`1
#2#d

iM
) as a sum of ¸ vectors in M. This can be done by "rst testing if

lN!(d
iL`1

#2#d
iM

)3N. If this holds, we write l"lN!(d
iL`1

#2#d
iM

) and "nd a "rst
list Mk (1)N of all k (1)-l, and also the corresponding list Mc (1)N, where c(1)"l!k (1). We
repeat this procedure for each element of Mc (1)N and obtain the new lists Mk (2)N and Mc (2)N,
and so forth, until the lists Mk (¸)N and Mc(¸)N are achieved. This tree-like generation of
k gives all partitions of the given l. For more details see reference [18].

This partitioning procedure was implemented in the early FORTRAN program
(NORFOR) developed in reference [18]. However, in the present Maple version
(NORFORM) a &&reverse'' strategy is adopted, that is to say, instead of starting from a given
lN and then "nding the partitions de"ned by equation (15), we rather calculate each product
in the inner sum of equation (14) and then update the corresponding coe$cient /(N)

Jl6 with
lN satisfying equation (15). This simpler method is possibly less e$cient than the partitioning
procedure. Therefore, the latter should be implemented in the future.
TABLE 2

¹he list of vectors k (l"3), contained in two given vectors l

l"[2 1 2 1 0], DkD"3 l"[5 1 2 0 2], DkD"5

[2 1 0 0 0] [5 0 0 0 0]
[2 0 1 0 0] [4 1 0 0 0]
[1 1 1 0 0] [4 0 1 0 0]
[1 0 2 0 0] [3 1 1 0 0]
[0 1 2 0 0] [3 0 2 0 0]

[2 1 2 0 0]
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4.3. REDUCING COEFFICIENT UPDATES

It is easily veri"ed that, in order to achieve an NM -normal reduced system with "nite NM ,
it is not necessary to update all coe$cients from the current to the desired normalization
order NM . Before stating Theorem 2, we de"ne a bounding function of DlD de"ned in the
interval [N#1, H], for integers H, N with H*N#1 as

f H,N( Dl D)"
H!DlD

N
if

H

N#1
(DlD ,

f H,N( Dl D)"Dl D if
H

N#1
*DlD .

(18)

The following theorem [20] is useful to discard unnecessary updates and reduce the
computation time signi"cantly.

Theorem 3. Assume that system (1) is in N!1 normal form (N*1, and for N"1 the system
is the original one with linear normal transformation yet to be performed). ¸et
lA"[l

l`1
,2, l

n
]. ¹hen the coe.cients /(N)

il ( Dl D*N#1) to be updated in order to get the
NM -normal reduced system (NM *N!1) are those satisfying

DlAD)f NM ,N(l), i"1,2, l,

Dl D)f NM ~1,N (l), i"l#1,2, n.
(19)

As an example, assume that we wish to obtain the 3-normal form. Then, for the linear
transformation we need to update only the coe$cients

(1) /
jl( DlD"2, DlAD)1, j"1,2, n),

(2) /
kk( DkD"2, k3M, k"l#1,2, n),

(3) /
jk( DkD"3, k3M, j"1,2, l ; jk{j"0).

Thus, a large number of coe$cients can be discarded since, in general, l is much smaller
than n.

5. NUMERICAL EXAMPLES

Some examples are presented to illustrate the applicability of the normalization method
for higher order normalization using the Maple program that we will call NORFORM. All
the results were obtained by running the NORFORM on a 400 MHz PC Pentium II. The
computation time refers to the calculation of the normal transformations, the normal forms
and the periodic solution ("rst two examples). To avoid confusion with the index i, we use

the notation I"J!1.

5.1. VAN DER POL OSCILLATOR

We use the following version of Van der Pol's equation:

xK!(e2!x2 )xR #x"0. (20)
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This version is convenient because it has all non-linear terms with degree 3. Thus, the order
increment is p"2 and we can directly obtain odd-normal forms. We rewrite equation (20)
in state-space form:

xR
1

xR
2

xR
3

"

0 1 0

!1 0 0

0 0 0

x
1

x
2

x
3

#

0

x
2
x2
3
!x2

1
x
2

0

,

where the variable x
3

corresponds to parameter e. This is a fully critical system l"n"3
with all three eigenvalues on the imaginary axis. The recursive normalization can be applied
up to any required order; however, the computation time increases very fast as the order of
normalization increases. We have obtained normalization up to the 17th order with
NORFORM. The program NORFORM took about 30 s of CPU time to calculate the
11-normal form. Note that in reference [21], only the 3-normal form was obtained. The
limit cycles obtained by increasing normalization order, from 3 to 17 for e"1, are shown in
Figures 2}6. The limit cycles approximated by di!erent orders of normal forms are plotted
with 60 points. The result of the oscillator simulation is also presented with the initial
condition x

1
(0)"1.

Figure 3 shows that high order normalization e!ectively gives better approximation, in
comparison with the simulation result obtained by numerical integration of the di!erential
equations. This encourages us to look for increasing order of normal forms.

Figures 2}6 show that the convergence of the approximations to the true periodic
solution of Van der Pol's oscillator (e"1) is not uniform. The 13-normal form leads to
a much more precise periodic oscillation than the 3-normal form. However, the 15- and
17-normal forms are slightly less precise than the 13-normal form. This may be related to
the non-convergence of the power series involved in the normal form.
Figure 2. Limit cycles of the Van Der Pol oscillator with e"1, computed from numerical simulation (solid line)
and from the 3-normal form obtained via NORFORM (plotted with &&]'').



Figure 3. Limit cycles of the Van Der Pol oscillator (e"1) obtained via NORFORM (plotted with &&]'' and
&&L'', for 5- and 7-normal forms respectively).

Figure 4. Limit cycles of the Van Der Pol oscillator (e"1) obtained via NORFORM (plotted with &&]'' and
&&L'', for 9- and 11-normal forms respectively).

NORMAL FORMS 919
5.2. DOUBLE PENDULUM

The double pendulum system shown in Figure 7 consists of two rigid weightless links of
equal length which carry two concentrated masses under the action of springs, dampers and
a follower force.



Figure 5. Limit cycles of the Van Der Pol oscillator (e"1) obtained via NORFORM (plotted with &&]'' and
&&L'', for 13- and 15-normal forms respectively).

Figure 6. Limit cycle of the Van Der Pol oscillator (e"1), computed from the 17-normal form (plotted with
&&]'') obtained via NORFORM.
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As in reference [22], the double pendulum is described by a set of "rst order di!erential
equations with non-linear terms up to third order. We will assume that the equations are
exact in order to allow comparison with the results of reference [22]. These are also the
equations used in the numerical simulations.

The critical point is de"ned by a set of parameters ( f
1
, f

2
, f

3
, f

4
and g"g

c
#k). At the

critical point the linear part of the system has two critical eigenvalues at $1
2
I and a zero



Figure 7. The double-pendulum system.
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eigenvalue due to parameter k. Thus, the dimension of the critical part is l"3 and the
non-critical part has dimension 2 with eigenvalues located at !1

2
and !5

4
. This

corresponds to a Hopf bifurcation.
The state variable z is de"ned as z

1
"e, z

2
"h

1
, z

3
"h

2
, z

4
"hQ

1
, z

5
"hQ

2
, where e2"k.

This results in a system with odd non-linearities (p"2). The variable z
3

is di!erent from
z
3

in reference [22] to avoid the singularity of a linear transformation matrix S
11

[16].
The NORFORM program took about 5 min 30 s to achieve the 9-normal form

approximation. Close to the bifurcation (k"0.05), the 3- and 5-normal forms give good
approximations of the post-critical limit cycle, compared to the numerical simulation, as
shown in Figures 8 and 9. However, far from the bifurcation (k"0.1), a better
approximation is obtained with higher order normalization, as seen in Figures 10 and 11.

A further way to check the quality of the approximations is to compare the
corresponding oscillation frequencies with that of the exact periodic solution obtained by
simulation. Table 3 shows the frequencies obtained by simulation and by the N-normal
forms for k"0.05 and 0.1. For comparison, we also present the frequencies calculated from
the results of reference [22]. It is clear that our recursive normalization method gives
superior approximations to the true frequency.

6. AN EXAMPLE WITH LARGE DIMENSION

The NORFORM (Maple) program was applied to an example with dimension n"10.
The purpose is to evaluate the processing time for systems with large dimensions.

We have not yet implemented the simpli"cation possible with Theorem 2. So only an
estimate of the e!ectiveness of the latter will be given.



Figure 8. Limit cycle of the double pendulum with g"1)55 obtained with the 3-normal form. Solid line
corresponds to the simulation result.

Figure 9. Limit cycle of the double pendulum with parameter g"1)55, obtained with the 5-normal form.
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Figure 10. Limit cycles of the double pendulum with parameter g"1)60, obtained with 3,5-normal forms,
plotted with &&L'', &&]'' respectively.

Figure 11. Limit cycle of the double pendulum with parameter g"1)60, obtained with 7,9-normal forms,
plotted with &&L'', &&]'' respectively.
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TABLE 3

Frequency comparison, RN stands for recursive normalization

k"0)05 k"0)1
u"0)440 rad/s u"0)333 rad/s

Simulation
u (rad/s) RN [22] RN [22]

3-normal 0)454 0)464 0)408 0)428
5-normal 0)447 0)470 0)376 0)445
7-normal 0)445 0)469 0)357 0)443
9-normal 0)444 0)469 0)340 0)442
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Consider the following system taken from references [17, 18]:

xR "Ax#

0

x
2
x
3
#a

1
x2
2
x
3

x
2
x
3
#a

2
x
1
x2
1

x
3
x
5

x
4
x
6

x
5
x
7

x
6
x
8

x
7
x
9

x
8
x
10

x
9
x
2

, (21)

0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 !1 0 0 0 1 0 0 0 0
0 0 0 !1 1 0 0 0 0 0
0 0 0 !1 !1 1 0 0 0 0A"

0 0 0 0 !1 !1 1 0 0 0
0 0 0 0 0 !1 !1 1 0 0
0 0 0 0 0 0 !1 !1 1 0
0 0 0 0 0 0 0 !1 !1 1
0 0 0 0 0 0 0 0 !1 !1

with x3R10. The "rst equation corresponds to the bifurcation control parameter.
Consider, for simplicity, that a

1
"a

2
"1. Note also that this example presents quadratic

and cubic non-linear terms so that the order increment is p"1. The critical eigenvalues are

0, $I (l"3) and the non-critical eigenvalues are !1, !1$J2I, !1$J!2#J2,

!1$J!2!J2 (m"7).
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The 3-, 5- and 7-normal forms results were obtained in 6 s, 4 min 6 s and 4h 51min,
respectively, without the simpli"cation of Theorem 2. The 7-normal form of the reduced

system is presented as below (I"J!1):

xR
2
"Ix

2
!1

2
Ix2

1
x
2
#1

6
Ix2

2
x
3
!1

8
Ix4

1
x
2

!1
6
Ix2

1
x2
2
x
3
# 7

432
Ix3

2
x2
3
! 1

16
Ix6

1
x
2

(22)

!17
96

Ix4
1
x2
2
x
3
# 25

864
Ix2

1
x3
2
x2
3
! 31003

155520
Ix4

2
x3
3
.

Only an estimate of the reduction in processing time by application of Theorem 2 was
obtained by restricting the number of coe$cients / to be updated, according to the number
predicted by Theorem 2. The modi"ed NORFORM took 1 h and 12 s CPU time to perform
the 7-normal form computation, thus reducing computation time by a factor of more than
4. We believe that this is a pessimistic estimate and that further reduction can be achieved
through Theorem 2.

7. CONCLUSION

Based on a set of previously developed recursive formulas, a Maple program
denominated as NORFORM was successfully implemented. It allows the computation of
normal forms and normal transformations, up to an arbitrary order. Numerical examples
were presented to compare the non-linear oscillations computed from the normal forms of
increasing order with solutions obtained by numerical simulation. Larger systems tend to
be quite time consuming if higher order normalization is required. However, at present,
NORFORM does not fully exploit the processing time reduction that could be achieved by
skipping the update of a large class of coe$cients according to Theorem 2 and also by
following the partitioning procedure of section 4.2. These simpli"cations are being presently
incorporated in NORFORM. We expect that the computational load will be drastically
reduced in this way.
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APPENDIX A: PARTITION ALGORITHM

The following Figure A1 displays a computational scheme for the partition algorithm
described in problem 2, section 4.2.
Figure A1. Implementation of the partition algorithm described in problem 2, section 4.2
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